Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
1.
bioRxiv ; 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38562842

RESUMEN

Research into the disequilibrium of microglial phenotypes has become an area of intense focus in neurodegenerative disease as a potential mechanism that contributes to chronic neuroinflammation and neuronal loss in Parkinson's disease (PD). There is growing evidence that neuroinflammation accompanies and may promote progression of alpha-synuclein (Asyn)-induced nigral dopaminergic (DA) degeneration. From a therapeutic perspective, development of immunomodulatory strategies that dampen overproduction of pro-inflammatory cytokines from chronically activated immune cells and induce a pro-phagocytic phenotype is expected to promote Asyn removal and protect vulnerable neurons. Cannabinoid receptor-2 (CB2) is highly expressed on activated microglia and peripheral immune cells, is upregulated in the substantia nigra of individuals with PD and in mouse models of nigral degeneration. Furthermore, modulation of CB2 protects against rotenone-induced nigral degeneration; however, CB2 has not been pharmacologically and selectively targeted in an Asyn model of PD. Here, we report that 7 weeks of peripheral administration of CB2 inverse agonist SMM-189 reduced phosphorylated (pSer129) alpha-synuclein in the substantia nigra compared to vehicle treatment. Additionally, SMM-189 delayed Asyn-induced immune cell infiltration into the brain as determined by flow cytometry, increased CD68 protein expression, and elevated wound-healing-immune-mediator gene expression. Additionally, peripheral immune cells increased wound-healing non-classical monocytes and decreased pro-inflammatory classical monocytes. In vitro analysis of RAW264.7 macrophages treated with lipopolysaccharide (LPS) and SMM-189 revealed increased phagocytosis as measured by the uptake of fluorescence of pHrodo E. coli bioparticles. Together, results suggest that targeting CB2 with SMM-189 skews immune cell function toward a phagocytic phenotype and reduces toxic aggregated species of Asyn. Our novel findings demonstrate that CB2 may be a target to modulate inflammatory and immune responses in proteinopathies.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38502778

RESUMEN

Background: The cannabinoid receptor 2 (CB2R), a cannabinoid receptor primarily expressed in immune cells, has been found in the brain, particularly in the hippocampus, where it plays crucial roles in modulating various neural functions, including synaptic plasticity, neuroprotection, neurogenesis, anxiety and stress responses, and neuroinflammation. Despite this growing understanding, the intricate electrophysiological characteristics of hippocampal neurons in CB2R knockout (CB2R KO) mice remain elusive. Aim and Methods: This study aimed to comprehensively assess the electrophysiological traits of hippocampal synaptic and network functions in CB2R KO mice. The focus was on aspects such as synaptic transmission, short- and long-term synaptic plasticity, and neural network synchrony (theta oscillations). Results: Our findings unveiled multiple functional traits in these CB2R KO mice, notably elevated synaptic transmission in hippocampal CA1 neurons, decreased both synaptic short-term plasticity (paired-pulse facilitation) and long-term potentiation (LTP), and impaired neural network synchronization. Conclusion: In essence, this study yields insightful revelations about the influence of CB2Rs on hippocampal neural functions. By illuminating the electrophysiological modifications in CB2R KO mice, our research enriches the comprehension of CB2R involvement in hippocampal function. Such insights could hold implications for advancing our understanding of the neural mechanisms under the influence of CB2Rs within the brain.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38498014

RESUMEN

Objective: Evidence supports a role of cannabinoid receptor 2 (CB2) in regulating the immune response. Some variations in the CB2 receptor gene (CB2) were linked to the susceptibility of developing rheumatoid arthritis (RA). The aim of this study is to assess the relationship between CNR2 rs2501431 and the risk of developing RA in Lebanese patients. Methods: A total of one hundred five Lebanese RA patients and one hundred five controls participated in the study. CNR2 was genotyped and analyzed. Results: Using χ2 test, our results show that the CC genotype was the most common (47.6%, p<0.00001) and that the C allele highly predominated (64%, p<0.00001) in the RA group compared to the control group. The relative odds ratio show that carriers of the CC genotype have more than 13-fold risk of developing RA as compared to TT. Conclusion: Our results suggest that the rs2501431 variant of CNR2 gene can be considered as a risk factor for RA development, and thus implicate the potential targeting of CB2 receptor for the treatment of RA.

4.
Eur J Pharmacol ; 963: 176245, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38052413

RESUMEN

Mammalian heart is capable to regenerate almost completely early after birth through endogenous cardiomyocyte proliferation. However, this regenerative capacity diminishes gradually with growth and is nearly lost in adulthood. Cannabidiol (CBD) is a major component of cannabis and has various biological activities to regulate oxidative stress, fibrosis, inflammation, and cell death. The present study was conducted to investigate the pharmacological effects of CBD on heart regeneration in post-MI mice. MI models in adult mice were constructed via coronary artery ligation, which were administrated with or without CBD. Our results demonstrate that systemic administration (10 mg/kg) of CBD markedly increased cardiac regenerative ability, reduced infarct size, and restored cardiac function in MI mice. Consistently, in vitro study also showed that CBD was able to promote the proliferation of neonatal cardiomyocytes. Mechanistically, the expression of miR-143-3p related to cardiomyocyte proliferation was significantly down-regulated in CBD-treated cardiomyocytes, while the overexpression of miR-143-3p inhibited cardiomyocyte mitosis and eliminated CBD-induced cardiomyocyte proliferation. Moreover, CBD enhanced the expression of Yap and Ctnnd1, which were demonstrated as the target genes of miR-143-3p. Silencing of Yap and Ctnnd1 hindered the proliferative effects of CBD. We further revealed that inhibition of the cannabinoid receptor 2 impeded the regulatory effect of CBD on miR-143-3p and its downstream target Yap/Ctnnd1, which ultimately eliminated the pro-proliferative effect of CBD on neonatal and adult cardiomyocytes. Taken together, CBD promotes cardiomyocyte proliferation and heart regeneration after MI via miR-143-3p/Yap/Ctnnd1 signaling pathway, which provides a new strategy for cardiac repair in adult myocardium.


Asunto(s)
Cannabidiol , MicroARNs , Infarto del Miocardio , Animales , Ratones , Miocitos Cardíacos , Cannabidiol/farmacología , Cannabidiol/uso terapéutico , Infarto del Miocardio/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Proliferación Celular , Regeneración/fisiología , Mamíferos/genética
5.
Naunyn Schmiedebergs Arch Pharmacol ; 397(1): 381-393, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37450015

RESUMEN

Diabetic nephropathy (DN) is a condition that leads to end-stage chronic kidney disease characterized by inflammation and a deficiency of nitric oxide (NO). Cannabinoid receptor (CB2) activation by specific agonist reduces nuclear factor kappa beta (NF-κß) expression. Beta caryophyllene (BCP), a natural CB2 receptor activator, protects kidney function in several diseases. L-Arginine (LA) modulates several physiological processes by donating nitric oxide (NO). Hence, we tested a novel BCP-LA combination to treat DN and investigated its molecular mechanisms. BCP, LA, and combinations of both were evaluated in LPS-induced RAW 264.7 macrophage inflammation as well as in streptozotocin (55 mg/kg)-induced diabetes in SD rats. Diabetic rats were administered 200 mg/kg of BCP, 100 mg/kg of LA, and combination of both orally for 28 days. Biochemical markers and inflammatory cytokines were assessed in plasma; also, kidney tissue was examined for renal oxidative stress injury, NF-κß expression, and histology. After 28 days of treatment, BCP and LA combination significantly lowered plasma glucose levels than the disease control group. BCP and LA also normalized renal markers and oxidative stress of diabetic rats. Plasma and RAW macrophage cell lines showed reduced levels of IL-6 and TNF-α (P < 0.001). Histopathological evaluations revealed that BCP and LA together decreased renal fibrosis and collagen deposition also improved nephrotic indices. Meanwhile, the effect of BCP and LA together significantly reduced the NF-κß (P < 0.01) against diabetic rats. These results indicate that the innovative regimen BCP with LA may be a therapeutic treatment for DN, as it protects kidney tissue from diabetes via NF-κß inhibition.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Ratas , Animales , Nefropatías Diabéticas/patología , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/patología , Óxido Nítrico/metabolismo , Ratas Sprague-Dawley , Inflamación/tratamiento farmacológico , Fibrosis , Receptores de Cannabinoides
6.
NeuroImmune Pharm Ther ; 2(4): 387-400, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38116176

RESUMEN

The Cannabinoid 2 Receptor (CB2R) has been found to provide immunological modulation in different cell types. More recently, detection of CB2R in the cerebral endothelium suggests a possible role in the resolution of inflammation at the level of the blood-brain-barrier (BBB). Here, the notion that CB2R upregulation in brain endothelial cells could be exploited to promote vascular protection and BBB integrity was evaluated. Targeting and activation of CB2R was accomplished by a novel and highly specific chromenopyrazole based CB2R agonist, PM289. This study demonstrates that CB2R upregulation is induced as early as 8 h in the cortical vasculature in an experimental mouse model of TBI. Unlike CB2R, CB1R was marginally detected and not significantly induced. In the human brain endothelial cell line, hCMEC/D3 cells, similar induction of CB2R was observed upon stimulation with TNFα. Analysis of transendothelial electrical resistance shows that PM289 markedly prevented the barrier-leakiness induced by TNFα. The BBB is also responsible for maintaining an immunological barrier. The five-fold increase in ICAM1 expression in stimulated endothelial cells was significantly diminished due to CB2R activation. Utilizing wounding assays, results showed that wound repair could be accomplished in nearly half the time when the novel CB2R agonist is present compared to the untreated control. Lastly, mechanistically, the effects of CB2R may be explained by the observed inhibition of the p65 NFκB subunit. Overall, these studies support the notion that targeting and activating CB2R in the brain vasculature could aid in BBB and vascular protection in the context of neuroinflammation.

7.
Int J Mol Sci ; 24(22)2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38003712

RESUMEN

The therapeutic application of cannabinoids has gained traction in recent years. Cannabinoids interact with the human endocannabinoid system in the skin. A large body of research indicates that cannabinoids could hold promise for the treatment of eczema, psoriasis, acne, pruritus, hair disorders, and skin cancer. However, most of the available data are at the preclinical stage. Comprehensive, large-scale, randomized, controlled clinical trials have not yet been fully conducted. In this article, we describe new findings in cannabinoid research and point out promising future research areas.


Asunto(s)
Cannabinoides , Enfermedades de la Piel , Humanos , Cannabinoides/farmacología , Cannabinoides/uso terapéutico , Enfermedades de la Piel/tratamiento farmacológico , Endocannabinoides , Piel , Prurito/tratamiento farmacológico , Receptores de Cannabinoides
8.
Immunol Lett ; 264: 17-24, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37918639

RESUMEN

BACKGROUND: It has been reported that cannabinoid receptors 2 (CB2 receptors) play an important role in the pathophysiological process of sepsis, which may also be associated with the regulation of pyroptosis, an inflammatory programmed cell death. The present study aimed to investigate the protective effect of CB2 receptors on myocardial damage in a model of septic mice by inhibiting pyroptosis. METHODS: The C57BL/6 mice underwent cecal ligation and puncture (CLP) to induce sepsis. All mice were randomly divided into the sham, CLP, or CLP+HU308 group. Blood and heart tissue samples were collected 12 h after surgery. Hematoxylin and eosin staining was used for analyzing histopathological results. Creatine kinase isoenzymes (CK-MB) and IL-1ß were measured using ELISA, while lactate dehydrogenase (LDH) level was determined using photoelectric colorimetry. The expression levels of CB2 receptors and pyroptosis-associated proteins (NLRP3, caspase-1, and GSDMD) were measured using western blotting. The location and distribution of CB2 receptors and caspase-1 in myocardial tissues were assessed by immunofluorescence. TUNEL staining was used to quantify the number of dead cells in myocardial tissues. RESULTS: The CLP procedure increased CB2 receptor expression in mice. CB2 receptors were located in myocardial macrophages. Activating CB2 receptors decreased the levels of myocardial damage mediator LDH, CK-MB, and inflammatory cytokine IL-1ß. The results also showed that CLP increased the pyroptosis in myocardial tissues, while CB2 agonist HU308 inhibited pyroptosis by decreasing the level of NLRP3 and activating caspase-1 and GSDMD. CONCLUSIONS: CB2 receptor activation has a protective effect on the myocardium of mice with sepsis by inhibiting pyroptosis.


Asunto(s)
Proteína con Dominio Pirina 3 de la Familia NLR , Sepsis , Ratones , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis , Receptor Cannabinoide CB2 , Ratones Endogámicos C57BL , Sepsis/metabolismo , Miocardio/metabolismo , Punciones , Caspasas/farmacología
9.
Biomedicines ; 11(10)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37893016

RESUMEN

Neuroinflammation is a complex biological process that typically originates as a protective response in the brain. This inflammatory process is triggered by the release of pro-inflammatory substances like cytokines, prostaglandins, and reactive oxygen and nitrogen species from stimulated endothelial and glial cells, including those with pro-inflammatory functions, in the outer regions. While neuronal inflammation is common in various central nervous system disorders, the specific inflammatory pathways linked with different immune-mediated cell types and the various factors influencing the blood-brain barrier significantly contribute to disease-specific characteristics. The endocannabinoid system consists of cannabinoid receptors, endogenous cannabinoids, and enzymes responsible for synthesizing and metabolizing endocannabinoids. The primary cannabinoid receptor is CB1, predominantly found in specific brain regions such as the brainstem, cerebellum, hippocampus, and cortex. The presence of CB2 receptors in certain brain components, like cultured cerebellar granular cells, Purkinje fibers, and microglia, as well as in the areas like the cerebral cortex, hippocampus, and cerebellum is also evidenced by immunoblotting assays, radioligand binding, and autoradiography studies. Both CB1 and CB2 cannabinoid receptors exhibit noteworthy physiological responses and possess diverse neuromodulatory capabilities. This review primarily aims to outline the distribution of CB1 and CB2 receptors across different brain regions and explore their potential roles in regulating neuroinflammatory processes.

10.
Cell Insight ; 2(5): 100124, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37868095

RESUMEN

Type 2 immunity in the lung protects against pathogenic infection and facilitates tissue repair, but its dysregulation may lead to severe human diseases. Notably, cannabis usage for medical or recreational purposes has increased globally. However, the potential impact of the cannabinoid signal on lung immunity is incompletely understood. Here, we report that cannabinoid receptor 2 (CB2) is highly expressed in group 2 innate lymphoid cells (ILC2s) of mouse and human lung tissues. Of importance, the CB2 signal enhances the IL-33-elicited immune response of ILC2s. In addition, the chemogenetic manipulation of inhibitory G proteins (Gi) downstream of CB2 produces a similarly promotive effect. Conversely, the genetic deletion of CB2 mitigates the IL-33-elicited type 2 immunity in the lung. Also, such ablation of the CB2 signal ameliorates papain-induced tissue inflammation. Together, these results have elucidated a critical aspect of the CB2 signal in lung immunity, implicating its potential involvement in pulmonary diseases.

11.
Int Immunopharmacol ; 123: 110771, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37582314

RESUMEN

BACKGROUND: Dendritic cells (DCs) play a key role in a variety of inflammatory lung diseases, but their role in sepsis-associated acute lung injury (SA-ALI) is currently not been illuminated. Cannabinoid receptor 2 (CNR2) has been reported to regulate the DCs maturation. However, whether the CNR2 in DCs contributes to therapeutic therapy for SA-ALI remain unclear. In current study, the role of CNR2 on DCs maturation and inflammatory during SA-ALI is to explored. METHODS: First, the CNR2 level was analyzed in isolated Peripheral Blood Mononuclear Cells (PBMCs) and Bronchoalveolar Lavage Fluid (BALF) from patient with SA-ALI by qRT-PCR and flow cytometry. Subsequently, HU308, a specific agonist of CNR2, and SR144528, a specific antagonist of CNR2, were introduced to explore the function of CNR2 on DCs maturation and inflammatory during SA-ALI. Finally, CNR2 conditional knockout mice were generated to further confirm the function of DCs maturation and Inflammation during SA-ALI. RESULTS: First, we found that the expression of CNR2 on DCs was decreased in patient with SA-ALI. Besides, the result showed HU308 could decrease the maturation of DCs and the level of inflammatory cytokines, simultaneously reduce pulmonary pathological injury after LPS-induced sepsis in mice. In contrast of HU308, SR144528 exhibits opposite function of DCs maturate, inflammatory cytokines and lung pathological injury. Furthermore, comparing with SR144528 treatment, similar results were obtained in DCs specific CNR2 knockout mice after LPS treatment. CONCLUSION: CNR2 could alleviate SA-ALI by modulating maturation of DCs and inflammatory factors levels. Targeting CNR2 signaling specifically in DCs has therapeutic potential for the treatment of SA-ALI.


Asunto(s)
Lesión Pulmonar Aguda , Sepsis , Animales , Humanos , Ratones , Lesión Pulmonar Aguda/inducido químicamente , Citocinas/metabolismo , Células Dendríticas/metabolismo , Leucocitos Mononucleares/metabolismo , Lipopolisacáridos , Pulmón/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Cannabinoides , Sepsis/metabolismo
12.
Cureus ; 15(7): e41825, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37575784

RESUMEN

Cannabis, commonly known as marijuana, is used by at least 18% of the United States (US) population, which makes it the most commonly used federally illegal drug in the United States. It is widely used for recreational purposes, while its therapeutic benefits have been extensively explored in the US. For several years, cannabis has been used for the treatment of diverse health conditions, including pain management, anti-inflammatory effects, and spasticity associated with multiple sclerosis and other neurodegenerative diseases. However, cannabis use has been associated with some acute and chronic adverse effects. This review sheds light on gastrointestinal disorders, gastroesophageal reflux disease, pancreatitis, and peptic ulcer disease that have been associated with cannabis use.

13.
Eur J Pharmacol ; 956: 175932, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37536622

RESUMEN

Graft-versus-host disease (GVHD) is a serious inflammatory illness that often occurs as a secondary complication of bone marrow transplantation. Current therapies have limited effectiveness and fail to achieve a balance between inflammation and the graft-versus-tumor effect. In this study, we investigate the effects of the endocannabinoid anandamide on the complex pathology of GVHD. We assess the effects of an irreversible inhibitor of fatty acid amine hydrolase or exogenous anandamide and find that they increase survival and reduce clinical signs in GVHD mice. In the intestine of GVHD mice, treatment with exogenous anandamide also leads to a reduction in the number of CD3+, CD3+CD4+, and CD3+CD8+ cells, which reduces the activation of CD3+CD4+ and CD3+CD8+ cells, as assessed by enhanced CD28 expression, a T cell co-stimulatory molecule. Exogenous AEA was also able to reduce TNF-α and increase IL-10 in the intestine of GVHD mice. In the liver, exogenous AEA reduces injury, TNF-α levels, and the number of CD3+CD8+ cells. Interestingly, anandamide reduces Mac-1α, which lowers the adhesion of transplanted cells in mesenteric veins. These effects are mimicked by JWH133-a CB2 selective agonist-and abolished by treatment with a CB2 antagonist. Furthermore, the effects caused by anandamide treatment on survival were related to the CB2 receptor, as the CB2 antagonist abolished it. This study shows the critical role of the CB2 receptor in the modulation of the inflammatory response of GVHD by treatment with anandamide, the most prominent endocannabinoid.


Asunto(s)
Endocannabinoides , Enfermedad Injerto contra Huésped , Animales , Ratones , Endocannabinoides/farmacología , Enfermedad Injerto contra Huésped/tratamiento farmacológico , Enfermedad Injerto contra Huésped/prevención & control , Intestinos , Linfocitos/metabolismo , Alcamidas Poliinsaturadas/farmacología , Receptor Cannabinoide CB1 , Receptor Cannabinoide CB2 , Factor de Necrosis Tumoral alfa
14.
Cells ; 12(10)2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-37408253

RESUMEN

Endocannabinoid signaling plays crucial roles in human physiology in the function of multiple systems. The two cannabinoid receptors, CB1 and CB2, are cell membrane proteins that interact with both exogenous and endogenous bioactive lipid ligands, or endocannabinoids. Recent evidence has established that endocannabinoid signaling operates within the human kidney, as well as suggests the important role it plays in multiple renal pathologies. CB1, specifically, has been identified as the more prominent ECS receptor within the kidney, allowing us to place emphasis on this receptor. The activity of CB1 has been repeatedly shown to contribute to both diabetic and non-diabetic chronic kidney disease (CKD). Interestingly, recent reports of acute kidney injury (AKI) have been attributed to synthetic cannabinoid use. Therefore, the exploration of the ECS, its receptors, and its ligands can help provide better insight into new methods of treatment for a range of renal diseases. This review explores the endocannabinoid system, with a focus on its impacts within the healthy and diseased kidney.


Asunto(s)
Cannabinoides , Insuficiencia Renal Crónica , Humanos , Endocannabinoides/metabolismo , Ligandos , Riñón/patología , Insuficiencia Renal Crónica/patología , Cannabinoides/farmacología , Cannabinoides/metabolismo
15.
Int J Mol Sci ; 24(9)2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37175480

RESUMEN

Five million non-melanoma skin cancers occur globally each year, and it is one of the most common malignant cancers. The dysregulation of the endocannabinoid system, particularly cannabinoid receptor 2 (CB2), is implicated in skin cancer development, progression, and metastasis. Comparing wildtype (WT) to systemic CB2 knockout (CB2-/-) mice, we performed a spontaneous cancer study in one-year old mice, and subsequently used the multi-stage chemical carcinogenesis model, wherein cancer is initiated by 7,12-dimethylbenz[a]anthracene (DMBA) and promoted by 12-O-tetradecanoylphorbol-13-acetate (TPA). We found that aging CB2-/- mice have an increased incidence of spontaneous cancerous and precancerous skin lesions compared to their WT counterparts. In the DMBA/TPA model, CB2-/- developed more and larger papillomas, had decreased spontaneous regression of papillomas, and displayed an altered systemic immune profile, including upregulated CD4+ T cells and dendritic cells, compared to WT mice. Immune cell infiltration in the tumor microenvironment was generally low for both genotypes, although a trend of higher myeloid-derived suppressor cells was observed in the CB2-/- mice. CB2 expression in carcinogen-exposed skin was significantly higher compared to naïve skin in WT mice, suggesting a role of CB2 on keratinocytes. Taken together, our data show that endogenous CB2 activation plays an anti-tumorigenic role in non-melanoma skin carcinogenesis, potentially via an immune-mediated response involving the alteration of T cells and myeloid cells coupled with the modulation of keratinocyte activity.


Asunto(s)
Papiloma , Neoplasias Cutáneas , Animales , Ratones , 9,10-Dimetil-1,2-benzantraceno/toxicidad , Carcinogénesis/genética , Carcinogénesis/patología , Carcinógenos/toxicidad , Papiloma/patología , Receptores de Cannabinoides , Piel/patología , Neoplasias Cutáneas/inducido químicamente , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Acetato de Tetradecanoilforbol/toxicidad , Microambiente Tumoral
16.
Neurosci Biobehav Rev ; 150: 105226, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37164044

RESUMEN

Despite low levels of cannabinoid receptor type 2 (CB2R) expression in the central nervous system in human and rodents, a growing body of evidence shows CB2R involvement in many processes at the behavioral level, through both immune and neuronal modulations. Recent in vitro and in vivo evidence have highlighted the complex role of CB2R under physiological and inflammatory conditions. Under neuroinflammatory states, its activation seems to protect the brain and its functions, making it a promising target in a wide range of neurological disorders. Here, we provide a complete and updated overview of CB2R function in the central nervous system of rodents, spanning from modulation of immune function in microglia but also in other cell types, to behavior and neuronal activity, in both physiological and neuroinflammatory contexts.


Asunto(s)
Sistema Nervioso Central , Receptor Cannabinoide CB2 , Humanos , Receptor Cannabinoide CB2/metabolismo , Sistema Nervioso Central/metabolismo , Encéfalo/metabolismo , Neuronas/metabolismo , Microglía/metabolismo , Receptor Cannabinoide CB1/metabolismo
17.
Int J Mol Sci ; 24(8)2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37108770

RESUMEN

Diet-induced obesity (DIO) is a contributor to co-morbidities, resulting in alterations in hormones, lipids, and low-grade inflammation, with the cannabinoid type 2 receptor (CB2) contributing to the inflammatory response. The effects of modulating CB2 with pharmacological treatments on inflammation and adaptations to the obese state are not known. Therefore, we aimed to investigate the molecular mechanisms in adipose tissue of CB2 agonism and CB2 antagonism treatment in a DIO model. Male Sprague Dawley rats were placed on a high-fat diet (HFD) (21% fat) for 9 weeks, then received daily intraperitoneal injections with a vehicle, AM630 (0.3 mg/kg), or AM1241 (3 mg/kg), for a further 6 weeks. AM630 or AM1241 treatment in DIO rats did not alter their body weight, food intake, or liver weight, and it had no effect on their numerous circulating cytokines or peri-renal fat pad mass. AM1241 decreased heart weight and BAT weight; both treatments (AM630 or AM1241) decreased plasma leptin levels, while AM630 also decreased plasma ghrelin and GLP-1 levels. Both treatments decreased Adrb3 and TNF-α mRNA levels in eWAT and TNF-α levels in pWAT. AM630 treatment also decreased the mRNA levels of Cnr2, leptin, and Slc2a4 in eWAT. In BAT, both treatments decreased leptin, UCP1, and Slc2a4 mRNA levels, with AM1241 also decreasing Adrb3, IL1ß, and PRDM16 mRNA levels, and AM630 increasing IL6 mRNA levels. In DIO, CB2 agonist and CB2 antagonist treatment reduces circulating leptin in the absence of weight loss and modulates the mRNA responsible for thermogenesis.


Asunto(s)
Cannabinoides , Leptina , Ratas , Masculino , Animales , Factor de Necrosis Tumoral alfa/efectos adversos , ARN Mensajero/genética , Ratas Sprague-Dawley , Obesidad/tratamiento farmacológico , Obesidad/etiología , Tejido Adiposo , Cannabinoides/farmacología , Receptores de Cannabinoides , Dieta Alta en Grasa/efectos adversos , Inflamación/inducido químicamente , Termogénesis , Receptor Cannabinoide CB2/genética
18.
Front Mol Neurosci ; 16: 1061220, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36969555

RESUMEN

Neuropathic pain (NP) is the chronic pain in patients resulting from injuries or diseases in the somatosensory nervous system. However, effective treatment remains limited to opioids. Currently, there is an urgent need to develop new specific pharmaceuticals with low abuse potentiality. Cannabinoid receptor 2 (CB2R) is one of the significant receptors in the endocannabinoid system. It is widely expressed in the central nervous system, especially enriched in glial cells, and plays an important role in the occurrence and development of inflammation in the nervous system. CB2R activation has a neuroprotective effect on nerve injury. In this study, we report increased and more reactive microglia (with larger cell body, shorter processes, and fewer endpoints) observed in the spinal dorsal horn of spared nerve injury (SNI) rats. Continuous intrathecal administration of CB2R agonist PM226 attenuated mechanical and cold hyperalgesia in rats and prevented the transition of microglia to the proinflammatory stage. Thus, microglia transitioned into the neuroprotective stage. Meanwhile, the proinflammatory factors TNF-α and iNOS decreased, and the levels of anti-inflammatory factors Arg-1 and IL-10 increased. The content of P2X7 receptors in the spinal dorsal horn of rats increases with time after SNI. After continuous intrathecal administration of PM226, the content of P2X7 protein decreases significantly. The administration of P2X7 inhibitor A-438079 alleviated the mechanical hyperalgesia of rats, reduced the number of microglia, and decreased the content of P2X7. These results indicate that P2X7 is involved in the neuroprotective effect caused by CB2R activation. In conclusion, this study provides new insights into the neuroprotective mechanism of CB2R activation.

19.
Biomed Pharmacother ; 161: 114467, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36871538

RESUMEN

Cancer cachexia is a multifactorial disorder characterized by weight loss and muscle wasting, and there are currently no FDA-approved medications. In the present study, upregulation of six cytokines was observed in serum samples from patients with colorectal cancer (CRC) and in mouse models. A negative correlation between the levels of the six cytokines and body mass index in CRC patients was seen. Gene Ontology analysis revealed that these cytokines were involved in regulating T cell proliferation. The infiltration of CD8+ T cells was found to be associated with muscle atrophy in mice with CRC. Adoptive transfer of CD8+ T cells isolated from CRC mice resulted in muscle wasting in recipients. The Genotype-Tissue Expression database showed that negative correlations between the expression of cachexia markers and cannabinoid receptor 2 (CB2) in human skeletal muscle tissues. Pharmacological treatment with Δ9-tetrahydrocannabinol (Δ9-THC), a selective CB2 agonist or overexpression of CB2 attenuated CRC-associated muscle atrophy. In contrast, knockout of CB2 with a CRISPR/Cas9-based strategy or depletion of CD8+ T cells in CRC mice abolished the Δ9-THC-mediated effects. This study demonstrates that cannabinoids ameliorate CD8+ T cell infiltration in CRC-associated skeletal muscle atrophy via a CB2-mediated pathway. Serum levels of the six-cytokine signature might serve as a potential biomarker to detect the therapeutic effects of cannabinoids in CRC-associated cachexia.


Asunto(s)
Cannabinoides , Neoplasias Colorrectales , Humanos , Ratones , Animales , Cannabinoides/farmacología , Cannabinoides/uso terapéutico , Dronabinol/farmacología , Dronabinol/uso terapéutico , Caquexia/tratamiento farmacológico , Caquexia/etiología , Caquexia/prevención & control , Linfocitos T CD8-positivos , Citocinas , Inflamación , Inmunidad , Neoplasias Colorrectales/complicaciones , Neoplasias Colorrectales/tratamiento farmacológico , Atrofia Muscular
20.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36835468

RESUMEN

The endocannabinoid system, particularly cannabinoid receptor 2 (CB2 in mice and CNR2 in humans), has controversial pathophysiological implications in colon cancer. Here, we investigate the role of CB2 in potentiating the immune response in colon cancer in mice and determine the influence of CNR2 variants in humans. Comparing wild-type (WT) mice to CB2 knockout (CB2-/-) mice, we performed a spontaneous cancer study in aging mice and subsequently used the AOM/DSS model of colitis-associated colorectal cancer and a model for hereditary colon cancer (ApcMin/+). Additionally, we analyzed genomic data in a large human population to determine the relationship between CNR2 variants and colon cancer incidence. Aging CB2-/- mice exhibited a higher incidence of spontaneous precancerous lesions in the colon compared to WT controls. The AOM/DSS-treated CB2-/- and ApcMin/+CB2-/- mice experienced aggravated tumorigenesis and enhanced splenic populations of immunosuppressive myeloid-derived suppressor cells along with abated anti-tumor CD8+ T cells. Importantly, corroborative genomic data reveal a significant association between non-synonymous variants of CNR2 and the incidence of colon cancer in humans. Taken together, the results suggest that endogenous CB2 activation suppresses colon tumorigenesis by shifting the balance towards anti-tumor immune cells in mice and thus portray the prognostic value of CNR2 variants for colon cancer patients.


Asunto(s)
Carcinogénesis , Neoplasias del Colon , Receptor Cannabinoide CB2 , Animales , Humanos , Ratones , Carcinogénesis/genética , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Ratones Noqueados , Receptor Cannabinoide CB2/genética , Receptor Cannabinoide CB2/metabolismo , Pronóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...